B-hSIGLEC15 mice

C57BL/6N-Siglec15tm1(SIGLEC15)Bcgen/Bcgen • 110121

B-hSIGLEC10 mice
B-hSIGLEC15 mice(C)

B-hSIGLEC15 mice

Product nameB-hSIGLEC15 mice
Catalog number110121
Strain nameC57BL/6N-Siglec15tm1(SIGLEC15)Bcgen/Bcgen
Strain backgroundC57BL/6N
AliasesSIGLEC15 (CD33L3, HsT1361, SIGLEC-15)

on this page

  • Description
  • Phenotypic analysis
  • Efficacy

Posters

View All

    Publication

      Description

      SIGLEC15 (Sialic acid-binding immunoglobulin-like lectin 15) belongs to Siglec (sialic acid binding ig-like lectin), also known as CD33 antigen-like 3, and binds sialic acid type I transmembrane protein. SIGLEC15 is DAP12 (DNAX activating protein 12 kDa) related immune receptors, DAP12 is based on the immune activated receptor tyrosine motif (ITAM, immuno-receptor tyrosine -based activation motif) joint protein signaling pathways that SIGLEC15 with DAP12 participate in development of osteoclasts and absorption. SIGLEC15 is highly expressed on tumor cells and M2 macrophages, and is an effective immunosuppressive molecule. Similar to PD-1 / PD-L1 antibodies, SIGLEC15 antibody can effectively remove the inhibitory effect of T cells and cure cancer. SIGLEC15 clinical trials have been carried out, including non-small cell lung cancer, ovarian cancer, a variety of Ⅰ period clinical study in solid tumors.

      mRNA expression analysis

      Strain specific analysis of SIGLEC15 gene expression in WT and B-hSIGLEC15 mice by RT-PCR. Mouse Siglec15 mRNA was detectable in splenocytes of wild-type (+/+) mice. Human SIGLEC15 mRNA was detectable only in H/H, but not in +/+ mice.

      Protein expression analysis in macrophages
      Strain specific SIGLEC15 expression analysis in homozygous B-hSIGLEC15 mice by flow cytometry. Peritoneal lavage fluids were collected from WT and homozygous B-hSIGLEC15 (H/H) mice, and analyzed by flow cytometry with anti-SIGLEC15 antibody (hSIGLEC15 Ab5 and 5G12 were made in house, and both cross-react with human and mouse SIGLEC15). Mouse SIGLEC15 was detectable in WT mice. Human SIGLEC15 was detectable in homozygous B-hSIGLEC15 mice.
      Protein expression analysis in bone marrow-derived macrophages (BMDMs)
      Strain specific SIGLEC15 expression analysis in homozygous B-hSIGLEC15 mice by flow cytometry. Bone marrow were collected from WT, homozygous B-hSIGLEC15 KO (H/H) and B-hSIGLEC15 (H/H) mice, stimulated with 10 ng/mL M-CSF and cultured for 9 days and analyzed by flow cytometry with anti-SIGLEC15 antibody (SIGLEC15 Ab6 and 5G12 antibody were made in house, and 5G12 cross-reacts with human and mouse SIGLEC15 while Ab6 specifically recognizes human SIGLEC15). Mouse SIGLEC15 was detectable in WT mice but not the B-Siglec15 KO mice(-/-). Human SIGLEC15 was detectable in bone marrow-derived macrophages (BMDMs) especially the M2 macrophages of homozygous B-hSIGLEC15 mice.
      B-hSIGLEC MC38 binds 5G12 antibody

      Analysis of B-hSIGLEC15 MC38 by FACS. Flow cytometry analysis of the B-hSIGLEC15 MC38 was performed to assess anti-human SIGLEC15 antibody. Single live cells were gated and used for further analysis as indicated here. Human SIGLEC15 expression was detectable on B-hSIGLEC15 MC38 mice as evidenced by 5G12 (in house) binding vs isotype control.

      Analysis of spleen leukocyte subpopulations in B-hSIGLEC15 mice
      Analysis of splenic leukocyte subpopulations by FACSSplenocytes were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry to assess leukocyte subpopulations. (A) Representative FACS plots gated on single live CD45+ cells for further analysis. (B) Results of FACS analysis. Percentages of T, B, NK cells, monocytes/macrophages, and DC were similar in homozygous B-hSIGLEC15 mice and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation, or distribution of these cell types in spleen. Values are expressed as mean ± SEM.
      Analysis of splenic T cell subpopulations by FACSSplenocytes were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry for T cell subsets. (A) Representative FACS plots gated on TCRβ+ T cells and further analyzed. (B) Results of FACS analysis. Percentages of CD8+, CD4+, and Treg cells were similar in homozygous B-hSIGLEC15 and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in spleen. Values are expressed as mean ± SEM.
      Analysis of lymph node leukocyte subpopulations in B-hSIGLEC15 mice
      Analysis of lymph node leukocyte subpopulations by FACSLymph node were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry to assess leukocyte subpopulations. (A) Representative FACS plots gated on single live CD45+ cells for further analysis. (B) Results of FACS analysis. Percentages of T, B, NK cells, monocytes/macrophages, and DC were similar in homozygous B-hSIGLEC15 mice and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation, or distribution of these cell types in lymph node. Values are expressed as mean ± SEM.
      Analysis of lymph node T cell subpopulations by FACSLymph node were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry for T cell subsets. (A) Representative FACS plots gated on TCRβ+ T cells and further analyzed. (B) Results of FACS analysis. Percentages of CD8+, CD4+, and Treg cells were similar in homozygous B-hSIGLEC15 and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in lymph node. Values are expressed as mean ± SEM.
      Analysis of blood leukocyte subpopulations in B-hSIGLEC15 mice
      Analysis of blood leukocyte subpopulations by FACS Blood were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry to assess leukocyte subpopulations. (A) Representative FACS plots gated on single live CD45+ cells for further analysis. (B) Results of FACS analysis. Percentages of T, B, NK cells, monocytes/macrophages, and DC were similar in homozygous B-hSIGLEC15 mice and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation, or distribution of these cell types in blood. Values are expressed as mean ± SEM.
      Analysis of blood T cell subpopulations by FACSBlood were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry for T cell subsets. (A) Representative FACS plots gated on TCRβ+ T cells and further analyzed. (B) Results of FACS analysis. Percentages of CD8+, CD4+, and Treg cells were similar in homozygous B-hSIGLEC15 and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in blood. Values are expressed as mean ± SEM.In vivo efficacy of anti-human SIGLEC15 antibody
      Antitumor activity of anti-human SIGLEC15 antibody in B-hSIGLEC15 mice. (A) Anti-human SIGLEC15 antibody inhibited hSIGLEC15-MC38 tumor growth in B-hSIGLEC15 mice. Murine colon cancer hSIGLEC15-MC38 cells (5E5) were subcutaneously implanted into B-hSIGLEC15 mice (female, 7-8 week-old, n=5). Mice were grouped when tumor volume reached approximately 100 mm3, at which time they were treated with anti-human SIGLEC15 antibody with doses and schedules indicated in panel A. (B) Body weight changes during treatment. As shown in panel A, anti-human SIGLEC15 antibody 5G12 (in house) was efficacious in controlling tumor growth in a dose-dependent manner in B-hSIGLEC15 mice. Values are expressed as mean ± SEM.In vivo efficacy of anti-human SIGLEC15 antibody
      Antitumor activity of anti-human SIGLEC15 antibodies in B-hSIGLEC15 mice. (A) Anti-human SIGLEC15 antibodies inhibited hSIGLEC15-MC38 tumor growth in B-hSIGLEC15 mice. Murine colon cancer hSIGLEC15-MC38 cells (5E5) were subcutaneously implanted into B-hSIGLEC15 mice (female, 7-8 week-old, n=5). Mice were grouped when tumor volume reached approximately 100 mm3, at which time they were treated with anti-human SIGLEC15 antibodies with doses and schedules indicated in panel A. (B) Body weight changes during treatment. As shown in panel A, anti-human SIGLEC15 antibodies was efficacious in controlling tumor growth in B-hSIGLEC15 mice. Values are expressed as mean ± SEM. (All antibodies were provided by the clients)
      Antibody binding assay
      Analysis of B-hSIGLEC15 MC38 by FACS. Flow cytometry analysis of the B-hSIGLEC15 MC38 was performed to assess anti-human SIGLEC15 antibody. Single live cells were gated and used for further analysis as indicated here. Human SIGLEC15 expression was detectable on B-hSIGLEC15 MC38 as evidenced by 5G12 (in house) binding vs isotype control.